時間:2015-04-16 來源:互聯網 瀏覽量:
組裝電腦的朋友一般都必須對電腦硬件有一定的認識,必須要了解其均衡性,元件之間搭配的均衡性以及硬件的性能,處理器是電腦愛好者都非常關心的,那麼什麼樣的處理器才是不錯的處理器(CPU)呢?一般我們主要看的處理器的參數就可以知道大概在當前處理器屬於哪個檔次了,今天就來與大家詳細介紹處理器CPU的參數。
1.主頻
主頻也叫時鍾頻率,單位是MHz,用來表示CPU的運算速度。CPU的主頻=外頻×倍頻係數。很多人認為主頻就決定著CPU的運行速度,這不僅是個片麵的,而且對於服務器來講,這個認識也出現了偏差。至今,沒有一條確定的公式能夠實現主頻和實際的運算速度兩者之間的數值關係,即使是兩大處理器廠家Intel和AMD,在這點上也存在著很大的爭議,我們從Intel的產品的發展趨勢,可以看出Intel很注重加強自身主頻的發展。像其他的處理器廠家,有人曾經拿過一快1G的全美達來做比較,它的運行效率相當於2G的Intel處理器。
所以,CPU的主頻與CPU實際的運算能力是沒有直接關係的,主頻表示在CPU內數字脈衝信號震蕩的速度。在Intel的處理器產品中,我們也可以看到這樣的例子:1GHzItanium芯片能夠表現得差不多跟2.66GHzXeon/Opteron一樣快,或是1.5GHzItanium2大約跟4GHzXeon/Opteron一樣快。CPU的運算速度還要看CPU的流水線的各方麵的性能指標。
當然,主頻和實際的運算速度是有關的,隻能說主頻僅僅是CPU性能表現的一個方麵,而不代表CPU的整體性能。
2.外頻
外頻是CPU的基準頻率,單位也是MHz。CPU的外頻決定著整塊主板的運行速度。說白了,在台式機中,我們所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。但對於服務器CPU來講,超頻是絕對不允許的。前麵說到CPU決定著主板的運行速度,兩者是同步運行的,如果把服務器CPU超頻了,改變了外頻,會產生異步運行,(台式機很多主板都支持異步運行)這樣會造成整個服務器係統的不穩定。
目前的絕大部分電腦係統中外頻也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。外頻與前端總線(FSB)頻率很容易被混為一談,下麵的前端總線介紹我們談談兩者的區別。
3.前端總線(FSB)頻率
前端總線(FSB)頻率(即總線頻率)是直接影響CPU與內存直接數據交換速度。有一條公式可以計算,即數據帶寬=(總線頻率×數據帶寬)/8,數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率。比方,現在的支持64位的至強Nocona,前端總線是800MHz,按照公式,它的數據傳輸最大帶寬是6.4GB/秒。
外頻與前端總線(FSB)頻率的區別:前端總線的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈衝信號在每秒鍾震蕩一千萬次;而100MHz前端總線指的是每秒鍾CPU可接受的數據傳輸量是100MHz×64bit÷8Byte/bit=800MB/s。
其實現在“HyperTransport”構架的出現,讓這種實際意義上的前端總線(FSB)頻率發生了變化。之前我們知道IA-32架構必須有三大重要的構件:內存控製器Hub(MCH),I/O控製器Hub和PCIHub,像Intel很典型的芯片組Intel7501、Intel7505芯片組,為雙至強處理器量身定做的,它們所包含的MCH為CPU提供了頻率為533MHz的前端總線,配合DDR內存,前端總線帶寬可達到4.3GB/秒。但隨著處理器性能不斷提高同時給係統架構帶來了很多問題。而“HyperTransport”構架不但解決了問題,而且更有效地提高了總線帶寬,比方AMDOpteron處理器,靈活的HyperTransportI/O總線體係結構讓它整合了內存控製器,使處理器不通過係統總線傳給芯片組而直接和內存交換數據。這樣的話,前端總線(FSB)頻率在AMDOpteron處理器就不知道從何鈣鵒恕?
4、CPU的位和字長
位:在數字電路和電腦技術中采用二進製,代碼隻有“0”和“1”,其中無論是“0”或是“1”在CPU中都是一“位”。
字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進製數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理32位的CPU就能在單位時間內處理字長為32位的二進製數據。字節和字長的區別:由於常用的英文字符用8位二進製就可以表示,所以通常就將8位稱為一個字節。字長的長度是不固定的,對於不同的CPU、字長的長度也不一樣。8位的CPU一次隻能處理一個字節,而32位的CPU一次就能處理4個字節,同理字長為64位的CPU一次可以處理8個字節。
5.倍頻係數
倍頻係數是指CPU主頻與外頻之間的相對比例關係。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義並不大。這是因為CPU與係統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的“瓶頸”效應—CPU從係統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。
6.緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大於係統內存和硬盤。實際工作時,CPU往往需要重複讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬盤上尋找,以此提高係統性能。但是由於CPU芯片麵積和成本的因素來考慮,緩存都很小。
L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩衝存儲器均由靜態RAM組成,結構較複雜,在CPU管芯麵積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般服務器CPU的L1緩存的容量通常在32—256KB。
L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種芯片。內部的芯片二級緩存運行速度與主頻相同,而外部的二級緩存則隻有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而服務器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。
L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對遊戲都很有幫助。而在服務器領域增加L3緩存在性能方麵仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁盤I/O子係統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件係統緩存行為及較短消息和處理器隊列長度。
處理器CPU基本參數就是以上這些了,通過處理器硬件參數的對比我們就可以了解某一處理器怎麼樣,處理器好不好了。